Mining in the Future: Autonomous Robotics for Safer Mines

4th Biennial Conference

Ali Shahdi 10th October 2012

Mining in the Future

- Safer mines with reduced hazard to which personnel are exposed
- Improved production and efficiency
- Gain access to new resources
- Many industry leaders are investing in automation in both underground and opencast mining
 - Rio Tinto/ ACFR
 - Anglo American 2030 mine
 - Sandvik
 - Atlas Copco
 - Komatsu
 - CMU

Field Robotics

- Robotic systems for "real-world" environments
- Operating in environments:
 - Dynamic, unknown and unstructured
 - People may be present
- In contrast to controlled environments (e.g. Factories/Assembly Lines),
 these environments are much more challenging
- MIAS focuses on field robotics

Advantages of Autonomous Robots

- There are several advantages to using autonomous robots
 - Operate in extreme/inaccessible environments
 - Do not suffer from fatigue and the associated errors
 - Not bored by repetitive tasks
 - Require less support infrastructure
 - Advanced sensors

Degree of Autonomy

Teleoperation

Semi-autonomous

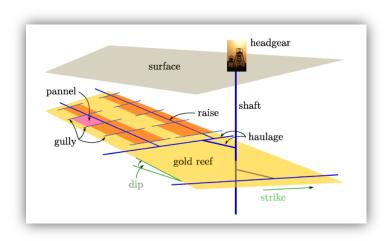
Mobile Intelligent Autonomous Systems Group

- The Mobile Intelligent Autonomous Systems (MIAS) was formed as an Emerging Research Area (ERA) in 2007.
 - CSIR did not have existing capability
 - Was deemed to be an important future capability
- First 5 years focussed on capability building now moving into commercial ventures
- Focus is on intelligence and sensors for field robotics applications

Autonomous Rover

A GPS-guided autonomous platform

 Autonomously navigate along known paths with collision avoidance


- Applications of this technology include
 - Security patrols
 - Transportation of cargo
 - Mining

Mine Safety Platform

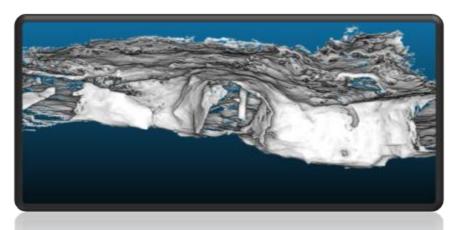
- Joint project with CSIR Centre for Mining Innovation and Material Science and Manufacturing
- Focuses on performing pre-entry safety inspections in deep mines

Problem Statement

- South Africa's hard rock mining is one the most dangerous types of mining
- Many fatalities happen post-blast and before stabilizing the roof

Challenges

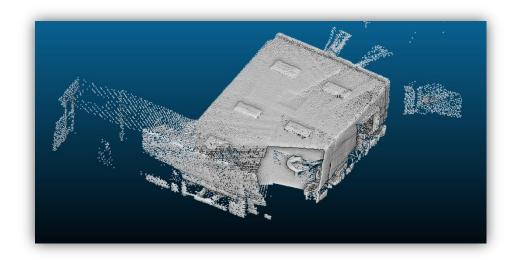
- Unknown and unstructured environment
- GPS deprived
- No landmarks and few distinguishing features
- Hostile environment, i.e. dark, humid, high temperatures
- Challenging to traverse



Operation Phases

- Simultaneous exploration and mapping
 - Local scans
 - Exploration frontier planning
 - Path planning
 - Platform motion control
 - Global map generation

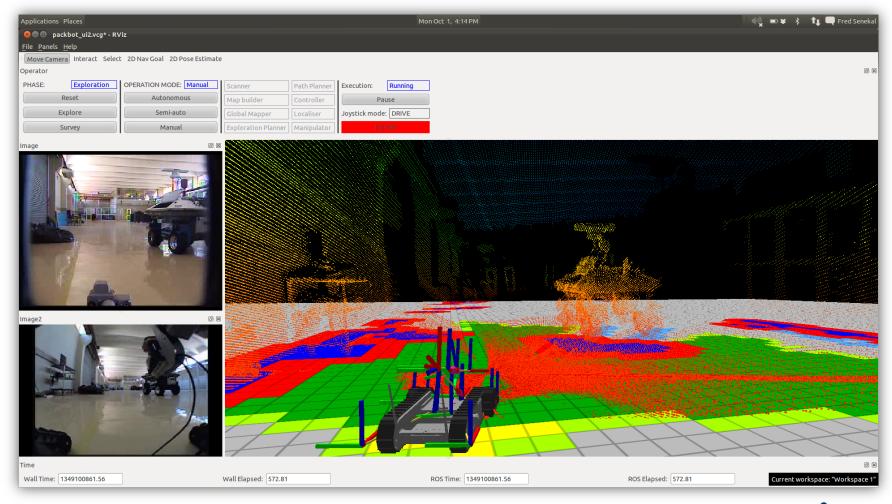
Generate a hazard map of the entire hanging wall



System Modules

Exploration

Localization



Manipulation

Current System

WWW.csir.co.za © CSIR 2012 Slide 13 our future through science

Conclusions

- Field robotics can help increase the safety in mining operations
- Tele-operated, semi-autonomous and autonomous robots can be utilized to reduce the hazard to which personnel are exposed
- Robots can be beneficial in operation in extreme/inaccessible environments, i.e. no fatigue, less error, repetitive tasks, less support infrastructure, advanced sensors
- Autonomous Rover Project outcome can be adopted for automating haul trucks in opencast mines
- Mine Safety Platform is a joint project with CMI and MSM targeting the task of post-blast inspection in deep hard rock mines

Thank you

