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Summary

Background Climate change is likely to affect transmission
of vector-borne diseases such as malaria. We quantitatively
estimated current malaria exposure and assessed the
potential effect of projected climate scenarios on malaria
transmission.

Methods We produced a spatiotemporally validated (against
3791 parasite surveys) model of Plasmodium falciparum
malaria transmission in Africa. Using different climate
scenarios from the Hadley Centre global climate model (HAD
CM3) climate experiments, we projected the potential effect
of climate change on transmission patterns. 

Findings Our model showed sensitivity and specificity of 63%
and 96%, respectively (within 1 month temporal accuracy),
when compared with the parasite surveys. We estimate that
on average there are 3·1 billion person-months of exposure
(445 million people exposed) in Africa per year. The projected
scenarios would estimate a 5–7% potential increase (mainly
altitudinal) in malaria distribution with surprisingly little
increase in the latitudinal extents of the disease by 2100. Of
the overall potential increase (although transmission will
decrease in some countries) of 16–28% in person-months of
exposure (assuming a constant population), a large
proportion will be seen in areas of existing transmission.

Interpretation The effect of projected climate change
indicates that a prolonged transmission season is as
important as geographical expansion in correct assessment
of the effect of changes in transmission patterns. Our model
constitutes a valid baseline against which climate scenarios
can be assessed and interventions planned.

Lancet 2003; 362: 1792–98
See Commentary page 1775

Introduction
90% of malaria cases occur in Africa.1 In the past decade,
the incidence of malaria has been escalating at an
alarming rate. There is an increasing interest in the
mapping and predictive modelling of the distribution,
intensity, and seasonality of malaria transmission.2–6

Climate change is likely to have various effects on health,
including changes in distribution and seasonal
transmission of vector-borne diseases.7 The extent of
these effects, however, continues to generate intense
debate,8,9 especially in the projected effect of climate
change on the global distribution of malaria, in which
different approaches have resulted in widely varying
estimates. A general issue facing all researchers has,
however, been the absence of comprehensive, good-
quality empirical data to validate the models used. The
link between climate and malaria distribution has long
been established. Sustained transmission depends on
favourable environmental conditions for both vector and
parasite. The effect of temperature on the duration of the
sporogonic cycle of the malaria parasite and vector
survival10,11 is particularly important. 

Several methods have been used to estimate changes in
the worldwide distribution of malaria in scenarios of
global climate change. One approach relies on a
biological model that predicts a large increase in global
malaria potential.12,13 Some have criticised biological
models on the basis that crucial parameters and their
relations with environmental factors have not yet been
quantified.14 Thus, biological models have used only a
limited number of covariates, and doubts have been
raised about the qualitative validity of some results.15 An
alternative approach, based on a statistical model derived
from the current malaria distribution projects little
change in distribution.14 The use of current malaria
distribution to derive the model resulted in areas that are
climatically suitable for transmission but in which malaria
has been eradicated (eg, northern parts of Australia),
skewing the results. Generic disadvantages of worldwide
or continent-wide statistically-driven models are that data
sets used to statistically develop the models are often of
uncertain accuracy, models are not easily reproducible
(ie, results vary with training data and methods used),
and the results are often applicable only to national or
subregional scales. We use a large set of parasite surveys
done throughout Africa to produce a spatiotemporally
validated model of malaria transmission and project the
effect of three climate scenarios by Hadley Centre global
climate model (HadCM3) climate experiments.

Methods
Data
We used mean long-term monthly rainfall and
temperature data as the basis for the seasonality model.16

The gridded surfaces were based on weather station data
from 1920 to 1980 and have a spatial resolution of 0·05º.
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The temperature data have SEs of 0·5°C and monthly
mean precipitation data have errors of 10–30%.

The population data we used was an interpolated
gridded surface17 of resolution 0·042° with 1995
population estimates. Data were interpolated with a
spatial interaction model that incorporated information
about the location and size of major towns, transport
infrastructures, and uninhabited areas. Overall,
uncertainty in these population estimates is likely to be
large, but remains within the usual range of error that is
associated with census figures for developing countries. 

We used B1 (low greenhouse gas emissions), A2a
(medium-high emissions), and A1FI (high emissions)
Intergovernmental Panel for Climate Change (IPCC)
climate scenarios18 generated with the HadCM3 model.
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Variable Threshold

Simulated effect
Parasite development Moving average �(19·5ºC+yearly SD of 
and vector survival temperature mean monthly temperature)
Frost Minimum yearly �5ºC

temperature
Availability of vector Moving average �60 mm
breeding sites rainfall
Catalyst month Moving average rainfall At least 1 month �80 mm
Parasite reservoir 1 month interruption Automatically assigned 
(also simulated by in transmission (as transmission status
the differential predicted by 
temperature climate thresholds)
threshold imposed)

Table 1: Criteria used to calculate months suitable for
P falciparum malaria transmission in Africa
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Figure 1: Distribution of parasite survey sites in Africa 
Surveys n=6284, total number of people tested n=1105596.
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Figure 2: Estimated number of months suitable for Plasmodium falciparum malaria transmission, and change in person-months of
exposure by country at present and by 2100 using three HadCM3 scenarios (B1, A2a, A1FI)
The scenarios project overall potential increases in person-months exposure by 2100 to be 16% (B1), 23% (A2a), and 28% (A1FI), respectively (constant
population assumed).
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The climate scenarios differ in the concomitant increase
in global mean temperature (under HadCM3) as a result
of possible future political, economic, technical, and social
developments affecting greenhouse gas emissions. For
example, between 1990 and 2100, B1, A2a, and A1F1,
project global increases of atmospheric CO2 of 47%, 98%,
and 126%, respectively. 

The data have a resolution of 3·75°�2·5° for three 
30-year mean periods: 2020s, 2050s, and 2080s.19 The
scenarios are presented in storylines, which represent
mutually consistent characterisations of future states of
the world during the 21st century, including demographic
and economic development and associated changes in
climate and sea level.18 The associated population and
gross domestic product scenarios were not incorporated
into the model. The settings are neither predictions nor
forecasts of future conditions. Rather, they describe
alternative plausible futures that conform to sets of
circumstances or constraints within which they arise.20

The true purpose of scenarios is to remove uncertainty by
determining the possible ramifications of climate change
along one or more plausible (but indeterminate) paths.21

Model
To derive the suitability criteria for the model, we
extracted climatic data from 15 sites (in transmission
settings ranging from holoendmic to malaria-free) for
which published malaria seasonal profiles existed.2 We
systematically analysed site-specific climatic data to
identify climatic thresholds to explain the observed
seasonal profiles. All thresholds used were derived from
published biological ranges affecting both vector and
parasite development. The thresholds were refined with
area-specific expert knowledge of the distribution and
seasonality of the disease in Africa and historical
published and unpublished maps for Kenya, Tanzania,
Zimbabwe, Namibia, and South Africa, and clinical-case
data for South Africa and Botswana.

Two monthly variables (moving average temperature and
rainfall) and three yearly variables (minimum temperature,
standard deviation of average monthly temperature, and
existence of a catalyst month) constituted the basis of our
model (table 1). Since a sporadic month of suitable climatic
conditions is not adequate for malaria transmission, we
used a 3-month moving average for variables such as
rainfall and temperature. Thus, for March, values used
were the average of January, February, and March. Once
minimum temperatures approach freezing, African
anopheline vector populations are radically reduced. 22 At a
consistent temperature of 19·5°C, the duration of the
sporogonic cycle of the Plasmodium falciparum parasite is

32 days with 4% of the total vector cohort surviving.11 We
analysed stable and seasonal climatic profiles and showed
that lower monthly temperatures can sustain transmission
of malaria in stable malarious areas. These differences are a
function of the annual variations in temperature. In
seasonal areas (higher latitudes and altitudes) vector and
parasite populations need to be fully regenerated after the
cold winter months to facilitate transmission. In stable areas
(lower latitudes and altitudes) temperatures hover around
the threshold mark for much of the year, therefore lower
temperatures can sustain transmission on account of the
existing parasite reservoir. 

Studies of anopheline mosquitoes have shown a close
association between breeding site availability and
precipitation.23 Additionally, rainfall is closely related to
soil moisture status, an important factor in mosquito
survival.11 However, a substantial lag can exist between a
precipitation event and suitable soil moisture status being
attained.3 Suitable vector breeding sites could occur in an
area that has recorded a low (or no) rainfall for the current
month on the strength of preceding precipitation events.
Conversely, latent moisture values are likely to be reduced
during a month of average rainfall but preceded by low
rainfall conditions. For these reasons a 3-month moving
average was also used for the rainfall data. This approach
allows rainfall from the previous 2 months to contribute to
a more accurate moisture-status estimate in the current
month.

Our analysis of climatic profiles in both seasonal and
stable malaria areas has shown the need for a catalyst
month (unpublished data)—ie, a month of highly suitable
rainfall conditions to provide adequate vector breeding
sites and regenerate the vector population.

A predicted 1-month transmission interruption (eg,
between two malaria seasons) was assigned transmission
status on the strength of the climatic suitability of the
bordering months and the existing parasite reservoir. The
thresholds are designed to delimit high-probability
malarious areas because the use of long-term mean data
precludes the delimitation of occasional epidemic areas.
All criteria had to be met for a pixel to be classed as
malarious in a particular month. 

Model validation
To independently validate the model both spatially and
temporally, we analysed 6284 laboratory-confirmed
parasite-ratio surveys, consisting of 1 105 596 people
tested, across Africa24 obtained between 1929 and 1994
(figure 1). We selected surveys that were undertaken
during 1 month and excluded those done in the same
location during the same month to minimise potential

Change in annual Change in average Area (km2)‡ Population exposure PME Proportion of increase in PME in 
rainfall (mm)† temperature (°C)† (millions) (millions) areas of existing transmission (%)

Current ·· ·· 15·24 444·722 3082·027 ··
2010–39

B1 –35·8 (77) 1·1 (0·3) 15·70 (3·0%) 471·61 (6·0%) 3220·51 (4·5%) 32·3%
A2a 2·0 (71) 1·3 (0·3) 15·80 (3·7%) 477·51 (7·4%) 3450·75 (12·0%) 65·8%
A1FI –16·8 (72) 1·3 (0·3) 15·52 (1·8%) 476·18 (7·1%) 3343·062 (8·5%) 51·7%

2040–69
B1 –55·3 (94) 1·9 (0·5) 15·62 (2·5%) 483·72 (8·8%) 3325·30 (7·9%) 22·3%
A2a 2·9 (101) 2·2 (0·5) 16·02 (5·1%) 495·15 (11·3%) 3626·50 (17·7%) 53·0%
A1FI –36·0 (139) 3·0 (0·7) 15·93 (4·5%) 507·13 (14·0%) 3619·00 (17·4%) 33·7%

2070–99
B1 –32·6 (99) 2·6 (0·6) 15·96 (4·7%) 502·67 (13·0%) 3559·42 (15·5%) 35·0%
A2a –18·0 (146) 3·3 (0·7) 16·20 (6·3%) 513·32 (15·4%) 3797·91 (23·2%) 41·5%
A1FI –38·2 (225) 5·3 (1·1) 16·33 (7·2%) 528·71 (18·9%) 3949·98 (28·2%) 27·6%

PME=person-months of exposure. *Constant population assumed. †Mean (SD). ‡% increase shown in parentheses.

Table 2: Estimated P falciparum malaria exposure and transmission in Africa with the HadCM3 B1, A2a, and A1FI scenarios*
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bias caused by excessive spatiotemporal clustering. We
superimposed the remaining 3791 surveys on the
resulting seasonality maps (derived from the model) and
calculated the sensitivity and specificity of the model (to
within a month’s temporal accuracy). Respective
sensitivity/specificity was defined as the proportion of
surveys in which malaria occurrence/non-occurrence is
correctly predicted by the model to within a month.

Projecting the effect of climate change 
Following standard practice, we interpolated the future
climate scenario surfaces19 to the resolution of the long-
term mean data (1920–80) using a bilinear interpolation.
We superimposed the change data from the HadCM3
experiments onto the long-term mean data to calculate
projections for future periods. We also superimposed
gridded population data17 on the resulting maps to
calculate potential person-months of exposure under
current and future climatic conditions. To isolate the
effects of climate change we assumed a constant
population over the century and did not attempt to
incorporate population projections into the future
estimates. We used person-months of risk as the main

outcome measure for assessment of the overall potential
effects of the climate scenarios on malaria transmission.
The measure combines both spatial and temporal aspects
of population exposure.

Role of the funding source
The sponsors of the study had no role in study design,
data collection, data analysis, writing of the manuscript,
or interpretation of results.

Results
Our seasonality model estimates that on average there are
3·1 billion person-months of exposure to malaria
(445 million people exposed) in Africa every year 
(table 2). The spatial and temporal validation of the
predicted current malaria distribution (figure 2) was
undertaken with positive (n=3199) and negative (n=592)
parasite surveys of 1 month duration. The model showed
a sensitivity (ie, the ability of the model to accurately
predict areas of transmission to within a month) of 63%
(95% CI 61–65) and a temporal sensitivity (the ability to
accurately predict malaria occurrence in any month) of
90% (89–91). A specificity within 1-month temporal

Person-months of exposure (millions) Population exposure (millions)

Current B1 (%) A2a (%) A1FI (%) Current B1 (%) A2a (%) A1FI (%)

Country
Algeria 0 ·· ·· �* 0 ·· ·· �†
Angola 42·791 35·4 31·2 16·4 8·049 11·2 5·8 0·8
Benin 44·906 –12·9 7·8 –10·9 5·409 0 0 0
Botswana 1·360 –28·6 –28·9 36 0·382 –21·5 –15·7 58·6
Burkina Faso 56·592 –1·6 5 –3·7 10·479 0 0 0
Burundi 24·194 93·6 97·3 117·5 3·738 51·3 56·5 62
Cameroon 103·665 8·9 17·6 16·8 12·682 2·5 3·2 3·6
Central African Republic 28·091 1·1 17·5 15·8 3·273 0 0 0
Chad 29·314 4·5 9·9 16·9 5·958 2·3 3·9 4·5
Congo 22·603 –9·5 –19·4 –54·6 2·593 0 0 –29·2
Democratic Republic of Congo 374·974 8·3 10·4 7·2 40·464 7·7 8·3 9·1
Equatorial Guinea 4·597 –5·1 –3·8 –12·7 0·391 1·8 1·8 1·8
Eritrea 5·462 53 59·3 64 1·921 22·7 23·1 26·2
Ethiopia 85·807 149·3 231·1 349·3 22·551 78·1 92·1 122·3
Gabon 10·424 –2·3 –3·8 –8 1·032 0·1 0·1 –1·9
Gambia 5·555 0 0 –0·3 1·111 0 0 0
Ghana 157·591 –2·6 2·1 –4·8 17·338 0 0 0
Guinea 56·524 2·9 6·4 4·7 7·346 0 0 0
Guinea Bissau 6·469 –0·7 –2·3 –10·7 1·064 0 0 0
Ivory Coast 132·988 8·3 9·4 –5·1 13·692 0 0 0
Kenya 111·214 69·7 93·6 124·1 14·496 49·1 58·8 73·1
Lesotho 0 ·· ·· �‡ 0 ·· ·· �§
Liberia 23·835 6·9 6·9 6·8 2·123 0 0 0
Malawi 36·616 42 40·7 52·8 8·323 15·7 15·9 16·2
Mali 48·971 –5·4 –5·4 –14·2 9·968 0·2 0·6 –1·1
Mauritania 2·431 –45·4 –56·2 –87·1 0·791 –44 –54·7 –86·6
Mauritius 59·341 35·8 47·9 60·1 9·179 36 42·4 52·6
Mozambique 99·075 –7·3 –7·9 –4·7 16·968 1·4 1·5 1·6
Namibia 3·485 –43·8 –81 –81·9 0·919 –40·8 –79·2 –81·2
Niger 33·352 2 5·6 3·3 8·787 0·5 0·6 0·7
Nigeria 834·941 0·5 6 6·4 111·710 0 0 0
Rwanda 18·333 103·8 122·5 171·3 2·435 70·8 86·5 107·3
Senegal 34·885 –6·6 –10·2 –24·7 8·306 –3·8 –4·9 –10·5
Sierra Leone 38·206 6 8·2 8·5 4·194 0 0 0
Somalia 2·036 –43·3 90·2 78·6 0·553 –14·1 76·5 54·1
South Africa 28·296 164·7 237 377 7·606 124·3 188·6 247
Sudan 80·011 4·8 6·6 8·2 17·908 5·1 0·5 1·7
Swaziland 2·441 56 68·2 99·6 0·583 31·6 37 47
Tanzania 178·642 11·6 12·9 19·2 26·501 9·1 10·7 12·7
Togo 33·000 –19·9 3·7 –16·1 4·085 0 0 0
Uganda 174·167 14·2 20·1 28·8 17·302 8·1 9·4 13
Zambia 24·827 81·1 77·2 82·9 7·190 12·4 12·4 12·4
Zimbabwe 20·015 152·2 149·2 156·8 5·322 106·8 108·9 109·3
Total 3·082·027 15·5 23·2 28·2 444·722 13·0 15·4 18·9

Numbers are derived from present climate conditions and increase projected to the end of the 21st century (2070–2099), assuming a constant population. *19 000
person-months of exposure. †19 000 people exposed to malaria. ‡902 000 person-months of exposure. §321 000 people exposed to malaria. �Represents those
countries that are predicted to have no malaria exposure at present, but in the A1FI scenario contain some areas that are suitable for transmission—% increase is
thus infinite.

Table 3: Estimated P falciparum malaria population exposure in Africa with the HadCM3 B1, A2a, and A1FI climate scenarios*
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accuracy of 96% (91–100) was obtained. The specificity is
remarkable because malaria surveys are usually done in
areas and during times of the year when malaria cases are
expected or have been recorded previously. Similarly, the
sensitivity is derived using some surveys done during
epidemic years and in areas with permanent breeding
sites. When interannual and small area variation and
effect of vector control and resolution of data used is
taken into account, the overall accuracy of the model is
good.

By 2100, the model estimates a potential continental
increase of 16–28% in person-months of exposure across
all three scenarios (table 2). This rise is coupled with a
5–7% (mainly altitudinal) increase in distribution with
surprisingly little change in the latitudinal extents of the
disease. The only substantial latitudinal extension (across
all scenarios) is seen in a region in the Limpopo Province
of South Africa, which is prone to occasional epidemics
(figure 2). The potential effect of climate change in areas
of existing transmission is noticeable, with 28–42% of new
person-months of exposure towards the end of the 21st
century arising in areas presently suitable for the disease
(table 2). This result is due to the increase in the length of
transmission season in these areas. The B1 scenario shows
the least increase in person-months of exposure across all
periods because of reductions in rainfall and smallest rises
in average temperature. The highest increase in person-
months of exposure during the 2020s and 2050s shown by
the A2a scenario is a result of the combined effect of slight
increase in rainfall and large rise in temperature, and
emphasises the importance of rainfall in malaria
transmission. The A1FI scenario shows the highest
increase in person-months of exposure by 2100, in which
the largest rise in temperature is coupled with a moderate
reduction in rainfall. This scenario shows the smallest
increase in distribution in the 2020s as a result of most of
the projected changes in transmission taking place in
populous areas of existing transmission, as an extension of
the malaria season. 

Countries with large areas that are close to the climatic
thresholds needed for transmission show large potential
increases across all scenarios. Ethiopia, Zimbabwe, and
South Africa are projected by all scenarios to show
increases of more than 100% in person-months of exposure
towards the end of the 21st century (table 3). This effect
would result from the projected potential increase in
highland malaria in Zimbabwe and Ethiopia, and the rises
in distribution and season length for South Africa. A host of
countries in West Africa (eg, Mali, Ghana, and Burkina
Faso), and Namibia and Mozambique in southern Africa
are projected by all settings to show a fall in person-months
of exposure because of the drier climate in these areas.
Regions where rainfall is the limiting factor are especially
prone to epidemics. The catastrophic malaria epidemic in
Ethiopia in 1958, for example, was largely associated with
unusually high rainfall over a long time. 

Discussion
We have produced a spatiotemporally validated malaria
transmission model for Africa and projected changes in
transmission patterns in differing climate scenarios. Our
findings have important implications for malaria control
in Africa since both the duration and timing of malaria
transmission season are important to inform efforts in
malaria control. The duration of the season will affect the
dynamics of transmission, with longer seasons allowing
heightened transmission and high levels of infection in the
population. Short periods of exposure are linked with a
waning immune response and fatal outcomes. 

The potential increase of 16–28% in person-months of
exposure in Africa by 2100 (on the assumption that future
climates fall within simulated ranges) should be of
concern because social conditions are likely to facilitate
this rise in most countries in view of the inadequate health
infrastructure, deteriorating malaria control programmes,
possible link between the HIV/AIDS and malaria,25 and
overall human landscape of the continent.

The basis for our model is climatic, and thus has some
limitations. For example, areas such as the Limpopo valley
(the border between South Africa and Zimbabwe) that are
adjacent to perennial water reservoirs might fail to meet
the necessary monthly rainfall threshold, but could still
provide good breeding grounds for vectors. We did not
take local demographic and socioeconomic circumstances
into account nor make provision for the effect of malaria
control on transmission. The inability of global circulation
models to accurately predict the current climate from
retrospective data,26 has led to a debate about their
application. As our understanding of global climate
dynamics increases and models are increasingly able to
handle this complexity, projections of the probable
response of the climate system to any scenario are likely to
improve and the model will constitute a valid baseline for
assessment.

The resurgence of highland malaria cannot necessarily
be attributed to recent climate change. Malaria is a
complex disease that is affected by a range of factors in
addition to climate—a recent analysis of four highland sites
in Africa where large increases in malaria cases were noted
showed no large climatic change during resurgence or the
last century.27 Some of these cases were attributed to
factors such as drug resistance, breakdown of control
programmes, and land-use change (although doubts have
been raised about the suitability of the data used in the
analysis28). However, climate provides the framework
within which transmission is possible and other factors
(except those that determine the availability of breeding
sites—irrigation, construction of dams, or removal of
potential breeding sites) can affect malaria transmission
only in spatio-temporal zones that are climatically suitable.

With adequate funding, technology, and commitment,
WHO’s Roll-Back Malaria campaign will endeavour to
halve deaths related to Plasmodium falciparum by 2010.29

The organisation recognised the need to improve
understanding of how climate-related and other ecological
factors affect the spread and severity of malaria.30 We
believe that transmission maps generated by our model
could form an integral component of this strategy. Our
model has achieved a good accuracy and is validated
against empirical data. Our work is an important first step
towards a model of intensity of transmission and
constitutes a valid baseline against which interventions can
be planned and climate change projections evaluated.
Such a baseline is essential if we are to put the theory of the
effect of climate change on vector-borne diseases into
practice.

Contributors
The corresponding author had full access to all data used in the study
and had the final responsibility for the decision to submit for publication.
F Tanser developed the malaria seasonality model and was responsible
for all GIS and statistical analysis, and writing of the manuscript. 
B Sharp critiqued all versions of the model and assisted in writing the
manuscript. D le Sueur conceived the MARA project and was
responsible for the initial seasonality model concept. He gave input into
the research at all stages of its development and assisted in the writing of
the manuscript.

Conflict of interest statement
None declared. 



For personal use. Only reproduce with permission from The Lancet publishing Group.

ARTICLES

1798 THE LANCET • Vol 362 • Month?? Date??, 2003 • www.thelancet.com

Acknowledgments
This article is a product of the international MARA/ARMA (Mapping
Malaria Risk in Africa/Atlas du Risque de la Malaria en Afrique)
collaboration. We thank the MARA principal investigators for the
collection and georeferencing of all parasite ratio studies used in the
research and their helpful comments during the development of the
model. Financial support was obtained from the South African Medical
Research Council, the IDRC and the Wellcome Trust, UK. We thank
Colleen Fraser for database support and Sari Kovats for her invaluable
comments. This article is dedicated to the memory of David le Sueur—
brilliant scientist and good friend. 

References
1 WHO. The world health report 1999: making a difference. Geneva:

World Health Organization, 1999.
2 Craig MH, Snow RW, le Sueur D. A climate-based distribution model

of malaria transmission in sub-Saharan Africa. Parasitol Today 1999;
15: 105–11.

3 Hay SI, Snow RW, Rogers DJ. Predicting malaria seasons in Kenya
using multitemporal meteorological satellite sensor data. 
Trans R Soc Trop Med Hyg 1998; 92: 12–20.

4 Kleinschmidt I, Bagayoko M, Clarke GP, Craig M, Le Sueur D. A
spatial statistical approach to malaria mapping. Int J Epidemiol 2000;
29: 355–61.

5 Rogers DJ, Randolph SE, Snow RW, Hay SI. Satellite imagery in the
study and forecast of malaria. Nature 2002; 415: 710–15.

6 Snow RW, Gouws E, Omumbo J, et al. Models to predict the 
intensity of Plasmodium falciparum transmission: applications to the
burden of disease in Kenya. Trans R Soc Trop Med Hyg 1998; 92:
601–06.

7 McMichael A, Githeko A. Human Health. In: McCarthy J, 
Canziani O, Leary N, Dokken D, White K, eds. Climate change 2001:
Impacts, Adaptation, and Vulnerability—contribution of Working
Group II to the Third Assessment Report of the Intergovernmental
Panel on Climate Change. New York: Cambridge University Press,
2001: 451–85.

8 Lindsay SW, Martens P. Malaria in the African highlands: past,
present and future. Bull World Health Organ 1998; 76: 33–45.

9 Reiter P. Global-warming and vector-borne disease in temperate
regions and at high altitude. Lancet 1998; 351: 839–40.

10 Onori E, Grab B. Indicators for the forecasting of malaria epidemics.
Bull World Health Organ 1980; 58: 91–98.

11 Molineaux L. Malaria: principles and practice of malariology:
Churchill Livingstone, 1988: 919–98.

12 Martens P, Niessen LW, Rotmans J, Jetten TH, McMichael AJ.

Potential impact of global climate change on malaria risk. 
Environ Health Perspect 1995; 103: 458–64.

13 Martens P, Kovats RS, Nijhof S, et al. Climate change and future
populations at risk of malaria. Global Environmental Change 1999;
9 (Special issue): 89––107.

14 Rogers DJ, Randolph SE. The global spread of malaria in a future,
warmer world. Science 2000; 289: 1763–66.

15 Reiter P. From Shakespeare to Defoe: malaria in England in the little
ice age. Emerg Infect Dis 2000; 6: 1–11.

16 Hutchinson MF, Nix HA, McMahan JP, Ord KD. Africa - A
topographic and climatic database, CD-ROM (1): Centre for
Resource and Environmental Studies, Australian National University,
1995.

17 Deichmann U. Africa population database: National Centre for
Geographic Information and Analysis and United Nations
Environment Programme, World Resources Institute,
http://grid2.cr.usgs., 1996.

18 Nakicenovic N. Special report on emissions scenarios: a special report
of working Group III of the Intergovernmental Panel on Climate
Change. New York: Cambridge University Press, 2000.

19 Johns T, Ingram W, Johnson C, et al. Anthropogenic climate change
for 1860 to 2100 simulated with the HadCM3 model under updated
emissions scenarios. Clim Dynam 2003; 20: 583–612.

20 Hammond A. Which world? Washington DC: Island Press, 1996.
21 Fisher RW. Future energy use. Future Research Quarterly 1996; 31:

43–47.
22 Stuckenberg BR. Effective temperature as an ecological factor in

Southern Africa. Zool Afr 1969: 145–97.
23 Sloof R. Field observations on the biting activity of Anopheles koliensis

Owen. Trop Geogr Med 1961: 67–76.
24 MARA. Towards an atlas of malaria risk in Africa: first technical

report of the MARA/ARMA collaboration. Durban, 1998.
25 Whitworth J, Morgan D, Quigley M, et al. Effect of HIV-1 and

increasing immunosuppression on malaria parasitaemia and clinical
episodes in adults in rural Uganda: a cohort study. Lancet 2000; 356:
1051–56.

26 Barnett TP. Comparison of near-surface air temperature variability in
11 coupled global climate models. J Climate 1999; 12: 511–18.

27 Hay SI, Cox J, Rogers DJ, et al. Climate change and the resurgence of
malaria in the East African highlands. Nature 2002; 415: 905–09.

28 Patz J, Hulme M, Rosenzweig C, et al. Climate change: regional
warming and malaria resurgence. Nature 2002; 420: 627–28.

29 Nabarro DN, Tayler EM. The roll back malaria campaign. Science
1998; 280: 2067–68.

30 WHO. A global strategy for malaria control. Geneva: World Health
Organization, 1993.


	Potential effect of climate change on malaria transmission in Africa
	Introduction
	Methods
	Data
	Model
	Model validation
	Projecting the effect of climate change
	Role of the funding source

	Results
	Discussion
	Acknowledgments
	References


